Optical properties and exciton dynamics of alloyed core/shell/shell Cd(1-x)Zn(x)Se/ZnSe/ZnS quantum dots.

نویسندگان

  • Bob C Fitzmorris
  • Ying-Chih Pu
  • Jason K Cooper
  • Yi-Fang Lin
  • Yung-Jung Hsu
  • Yat Li
  • Jin Z Zhang
چکیده

In this study we introduce a new method for the one-pot synthesis of core/shell/shell alloyed Cd1-xZnxSe/ZnSe/ZnS QDs and examine the effect of the shell coating on the optical properties and exciton dynamics of the alloy core. The photoluminescence (PL) quantum yield is greatly enhanced after shell growth, from 9.6% to 63%. The exciton dynamics were studied by time correlated single photon counting (TCSPC) and fit using integrated singular value decomposition global fitting (i-SVD-GF), which showed the biexponential observed lifetimes on the nanosecond time scale remain the same after shell growth. Using ultrafast transient absorption (TA) spectroscopy and SVD-GF, we have determined that surface passivation by ZnSe and ZnSe/ZnS shells reduces nonradiative recombination primarily on the picosecond time scale. These findings are helpful in directing the development of the next generation of QDs for biological labeling and other applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoluminescence dynamics of ensemble and individual CdSe/ZnS quantum dots with an alloyed core/shell interface

A comprehensive study of the photoluminescence dynamics in newly developed CdSe/ZnS quantum dots with alloyed core/shell interfaces is presented. Time-correlated single photon counting is used to measure the decay of exciton luminescence from both the ensemble and individual quantum dots. For decreasing emission wavelength (i.e., for smaller dots), the ensemble data reveal increasing total deca...

متن کامل

Controlled synthesis of high quality type-II/type-I CdS/ZnSe/ZnS core/shell1/shell2 nanocrystals.

Using phosphine-free and "green" chalcogen precursors, controlled synthesis of high quality CdS/ZnSe/ZnS core/shell1/shell2 nanocrystals has been successfully carried out using different sized CdS nanocrystals as cores. The properties and structures of the synthesized nanocrystals were characterized by absorption spectroscopy, photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), transm...

متن کامل

Synthesis of Reabsorption-Suppressed Type-II/Type-I ZnSe/CdS/ZnS Core/Shell Quantum Dots and Their Application for Immunosorbent Assay

We report a phosphine-free one-pot method to synthesize ZnSe/CdS/ZnS core-shell quantum dots (QDs) with composite type-II/type-I structures and consequent reabsorption suppression properties. The as-synthesized QDs possess high efficient red emission (with quantum yield of 82%) and high optical stability. Compared to type-I QDs, the ZnSe/CdS/ZnS QDs show larger Stokes shift and lower reabsorpti...

متن کامل

Water-based route to colloidal Mn-doped ZnSe and core/shell ZnSe/ZnS quantum dots.

Relatively monodisperse and highly luminescent Mn(2+)-doped zinc blende ZnSe nanocrystals were synthesized in aqueous solution at 100 °C using the nucleation-doping strategy. The effects of the experimental conditions and of the ligand on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of molar ratio of precursors and heating time...

متن کامل

Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1−x/ZnS (core/shell) quantum dots

Photoluminiscent (PL) cellulose aerogels of variable shape containing homogeneously dispersed and surface-immobilized alloyed (ZnS)x(CuInS2)1-x/ZnS (core/shell) quantum dots (QD) have been obtained by (1) dissolution of hardwood prehydrolysis kraft pulp in the ionic liquid 1-hexyl-3-methyl-1H-imidazolium chloride, (2) addition of a homogenous dispersion of quantum dots in the same solvent, (3) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 2013